YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

نویسندگان

  • Filipa Neto
  • Alexandra Klaus-Bergmann
  • Yu Ting Ong
  • Silvanus Alt
  • Anne-Clémence Vion
  • Anna Szymborska
  • Joana R Carvalho
  • Irene Hollfinger
  • Eireen Bartels-Klein
  • Claudio A Franco
  • Michael Potente
  • Holger Gerhardt
چکیده

Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation.

Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors ...

متن کامل

The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling

Vascular endothelial (VE)-cadherin transfers intracellular signals contributing to vascular hemostasis. Signaling through VE-cadherin requires association and activity of different intracellular partners. Yes-associated protein (YAP)/TAZ transcriptional cofactors are important regulators of cell growth and organ size. We show that EPS8, a signaling adapter regulating actin dynamics, is a novel ...

متن کامل

YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis.

Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ ...

متن کامل

Hippo-YAP/TAZ signaling in angiogenesis

Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signali...

متن کامل

YAP/TAZ-CDC42 signaling regulates vascular tip cell migration.

Angiogenesis and vascular remodeling are essential for the establishment of vascular networks during organogenesis. Here we show that the Hippo signaling pathway effectors YAP and TAZ are required, in a gene dosage-dependent manner, for the proliferation and migration of vascular endothelial cells (ECs) during retinal angiogenesis. Intriguingly, nuclear translocation of YAP and TAZ induced by L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018